riting Tutorials

That Actually

Communication

By Peter Vogel

for Learning

The documentation for a user interface often consists of a detailed listing of what
each component of the interface does. Unfortunately, that documentation doesn’t

provide what users need since most of the users’ tasks require working with multiple
components of the UL What users actually need is end-to-end puidance that starts at

the beginning of their task and finishes when they achieve their goals; in other words,

a tutorial. Sadly, most tutorials are written in a way that prevents users from being

able to take advantage of them.

Tutorials make the functionality provided
through the Ul more “real” by linking the UI to
the user’s goals and the actions that need to be
performed. When users need to vse a software
application to accomplish a goal, they often
begin by finding a tutorial that achieves that
goal and then work through it, modifying the
instructions in the tuforial to meet their needs,
If you think ahout the last time that you used
a set of written instructions (even if it wasn’t
called a tutorial) this probably reflects your
own experience, In this respect, at least, you
are a typical tutorial reader,

Selecting Tutorial Content
Users will only take time out of their lives to
work through a tutorial when they need the
{utorial to meet one of their own goals. There
is no point in writing a tutorial that allows the
user to “experience” some feature of the appli-
cation: or whose purpose is to demonstrate a
piece of technolegy. That means your first step
is determining the audience for your tutorial —
who your users are. Your second step is to
determine your user’s goals. Only after vou
determine who the audience is can you deter-
mine what their goals are.

Be careful not to substituie your goals
for your users’ goals. It’s unlikely that most

of your users want to become experts in
using your application. It’s more likely that
your users’ goals fall into the categories of
“getting my job done in a reasonable period
of time,” and “not looking (or feeling)
stupid.” If your users are going to interact
with your application infrequently-—only

for which of those goals the audience will seek
out a tutorial. For tasks that seem “intuitive,”
the user may choose the “fumble around”
strategy as the best way to achieve goals,
rather than reaching for a tutarial, Experis may
also choose to leverage existing knowledge
rather than seek out instruction. (Experts would
rather be caught dead than caught reading
help information.) When a user is in an office,
surrounded by other users, he or she will find
out how to perform common activities by
asking neighbors.

After you’ve determined your audience, its
goals, and which goals can be supported by a
tuterial, you're ready to start writing.

“If you think about the last time that you used
a set of written instructions (even if it wasn’t
called a tutorial) this probably reflects your
own experience. In this respect, at least, you
are a typical tutorial reader.”

once # thonth, fofinstancwthey’re not going
to be interested in {earning or remembering
any shortcut keys. Only if your users interact
with your application frequently is it likely
that they will be interested in becoming more
efficient using it,

After determining your audience and their
goals, your third step is to determine which
of those goals will require your support, and

14 User Experience, Volume 9, Issue 4, 4% Quarter 2010, www.UsabilityProfessionals.org

Designing Tutorials

A tutorial falls into three sections; an introduction,
a set of steps, and a short review. The introduc-
tion, which may be just a title, describes in the

user’s terms, the poal that is achieved by following

the steps in the tutorial, It’s the introduction that

allows users to find the tutorial that they need. The
review at the end of the tutorial, often a single line,
reminds users of the goal that’s been achieved and




prevents them from forgetting as they fight offthe
alligators, why they started out to drain the swarmp.

The individual steps are more compiicated.
Like a good UL, the steps In a tutorial provide
feedback. At the very least, tutorial feedback
allows users to orient themselves, For instance,
many tutorials have steps like this one.

Open the wizard. Click Next, Click Next.
Click Next.

By the second or third click, users won’t

be sure how far into the wizard they’ve come,
Feedback, in the form of the titles on wizard steps,
allows users to determine which step they’re on.

More importantly, feedback allews users
to determine if they are succeeding or failing,
Feedback needs to provide users with easity
recognizable signposts that allow them to
determine if they’re on the right track. Since
users will be modifying the steps as they work
through the tutorial, the signposts have to be
invariant across all the modifications that a user
may mdke to the steps, You may, for instance,
write a titorial for your application that makes
use of some sample data that you've provided
with your application. As you write your tutorial,
you'll use that sample data in your steps:

To display the information for customer
A123, select customer A123 from ihe list
on the screen.

Users, however, will not be taking
advantage of your sample data. Instead, they
will be following your tutorial and using their ,
own data. Providing the feedback, “Customer’
A123 will appear at the bottem of the form,”
therefore, won’t be helpfil. More useful
feedback would be: “The information for
the customer you selected will appear at the
bottom: of the form.”

Writing Steps and Handling Errors
The steps themselves need to support users
making modifications, While your tutorial may
refer to specific data——creating a sales order
for customer A123 for instance—your users
will be creating a sales order with their own
choices. To support the user, most steps must
begin with a description of the purpose of the
step: how this step moves users closer to their
goals. With that information, users can make
intelligent decisions about what modification

they should (and can) malke to the step.

For instance, the step “Click on
customer Al123 in the Customets window,”
doesn’t support letting the user make
modifications to the tutorial’s step. The
improved step:

Now you can choose the customer to
assign to the sales order by selecting the
customer from the Customers window.
This examples uses customer A123,

. As you probably know from your own
experience, etror happens. You’re not a
professional writer, 3o it’s to be expected

r ™
Scan the list of products on the order to
see which product (or products) appears
more than once. Delete any duplicate
entrles until each product appears only
once. You can increase the quantity on

the remaining line to order the correct
number units of the product.

o /

If you don’t have the huxury of usability testing,
you may find that you won’t be able to determine
what the typical errors are until your application
has been released to the field. You may need to
write an initial version of your tutorial where
you'll guess at the typical errors that users will
make and then revise your tutorial after release,
once you determine what the typical errors for

.feedback allows users to determine if they
are succeeding or failing. Feedback needs to
provide users with easily recognizable sign-
posts that allow them to determine if they’re

on the right track.”

that some of your steps (however much sense
they make to you) won’t make sense to your
readers. Even with the best writing in the
world, readers will make mistakes; they will
misread a step, fumble implementing a step,
or misunderstand the feedback they get from
the U1,

The solution to these errors is not to add

.more writing. In fact, more writing is more

likely td hide the point of a step than to
reveal it, and to create more errors than to

‘glinﬁnatg existing ones. The correct solution

is to didgnose the typical errors that users can
be expected to make, and provide feedback
that will allow the user to recognize the error.
Following the diagnosis, you can provide the
reader with instructions on how to correct the
problem, Here’s an example of a diagnosis
followed by the corrective action,

1 get the message, “Duplicate key in
table OrderLines.”

This message appears when you have
added the same product to your order
two or more times.

{lear Fuynarianon alama 0 Faoee A Ath /L

your users really are. Only at that point will you
have finished writing a truly effective tutorial,
The secret to writing an effective tutorial is
to recognize that users treat your tutotial as a
cookbook, not a contract. And, like cooks, users
will modify your fustructions to take advantage
of whatever ingredients are available to them and
what they prefer to put on the table, To support
that process effectively, first identify who you're
writing for, what their goals are, and whether they’ll
even use 2 tutorial to meet those goals, Then write
a recipe that supports user modifications and guides
ther through errors so that, using your UL they can
achieve their goals. U(

About the Author

Peter Vogel is a software developer,
user interface designer, technical
writer, and instructor, His company,
| PH&V Information Services, is

M| entering its fifteenth year. Clients
include Volvo the Canadian Imperial Bank of
Commerce, and Microsaft. Read his blog on
technical writing at hngp:{/rifinphvis.blogspot.com.
In addition to helping clients empower users with
effective user interface designs, Peter teaches Ul
design for Learning Tree International.




